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Abstract

We introduce a new class of primitive functions with non-linear pa-
rameters for representing light reflectance functions. The functions
are reciprocal, energy-conserving and expressive. They can capture
important phenomena such as off-specular reflection, increasing re-
flectance and retro-reflection. We demonstrate this by fitting sums
of primitive functions to a physically-based model and to actual
measurements. The resulting representation is simple, compact and
uniform. It can be applied efficiently in analytical and Monte Carlo
computations.
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1 INTRODUCTION

The bidirectional reflectance distribution function (BRDF) of a ma-
terial describes how light is scattered at its surface. It determines
the appearance of objects in a scene, through direct illumination
and global interreflection effects. Local reflectancemodelsthere-
fore play an essential role in local and global illumination simula-
tions.

The diagram of Figure 1 illustrates the importance of a proper
representation of reflectance data. The data originate from phys-
ical measurements, from scattering simulations on surfaces, from
physically-based reflectance models, or from a set of empirical pa-
rameters input by the user. The representation should capture the
necessary information in a way that allows it to be used in global il-
lumination algorithms. Several factors contribute to the quality and
usefulness of a representation:accuracy, physical correctnessand
computational efficiency.

First of all, the original data should be represented accurately
enough to obtain physically faithful results. However, in practice,
precise measurements are often not available. As a very precise
representation cannot improve imprecise data, a simpler model that
naturally interpolates the data may be preferable. It can also be
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useful to have a model with a limited set of parameters that are
intuitive to use. Such parameters provide an easy way to control or
to monitor the behavior of the model.

Secondly, the representation should be physically plausi-
ble. Reflectance functions are positive, reciprocal and energy-
conserving [12]. Preferably, their representations should satisfy
these constraints as well, because global illumination algorithms
may rely on it.

Thirdly, for actual application in global illumination computa-
tions, the ideal model should be computationally efficient. It is usu-
ally an element in the larger context of an illumination simulation
algorithm. One thus looks for a proper balance between accuracy,
memory use and computation times of the various components. In
the context of physically-based rendering, it makes little sense to
use an overly precise and computationally expensive or memory-
hungry model, when small subtleties are overwhelmed by global
illumination effects, or when the simulation is relatively inaccurate.

At present, many reflectance models are not physically plausi-
ble. More precise physical models are often computationally ex-
pensive and geared toward specific types of surfaces. The most ex-
pressive models, such as spherical harmonics or wavelet represen-
tations, may require significant memory to obtain acceptable repre-
sentations of even the simplest BRDFs. Yet we want to efficiently
represent the relatively complex reflectance of common surfaces
such as the wooden table shown in Figure 2. The pictures illustrate
the varying specular and diffuse reflectance for different viewing
angles.

In this paper we introduce a representation based on a new class
of functions with non-linear parameters. While the representation
does not offer the arbitrary accuracy that linear basis functions can
achieve, it is expressive enough to fit complex reflectance behavior.
Importantly, a single function can capture a complete BRDF over
its entire domain of incident and exitant directions. It is therefore
uniform and compact, as well as computationally efficient.

The next section gives a brief overview of previous work. Sec-
tion 3 discusses the concept of non-linear approximation. We then
present our specific primitive functions for modeling reflectance in
Section 4. The qualitative properties of functions are discussed in
Section 5, while quantitative fits to complex reflectance functions
are presented in Section 6. Section 7 shows more results.

2 PREVIOUS WORK

Previous research focuses on various aspects of reflectance func-
tions: their derivation, their measurement, and their representation.
Torrance and Sparrow [22], and Cook and Torrance [3, 4] derived
physical models based on geometrical optics, assuming specular
V-grooves, and incorporating masking and self-shadowing effects.
Their models correctly predict the off-specular reflection that they
had previously measured [21]. Extending this work, Heet al. [9]
derived a model based on physical optics. The final representation
of the model consists of an ideal diffuse component, a directional-
diffuse component and a specular mirror component, which are all
expressed by a set of analytic expressions. These can be evalu-
ated numerically, albeit at a fair computational expense. Poulin
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Figure 1: The representation of reflectance data constitutes the essential link between the origin of the raw data and their application in global
illumination algorithms.

Figure 2: These pictures show a table exhibiting typical increasing specular reflection for increasingly grazing angles. At the same time the
diffuse component, which results from subsurface scattering, fades out; the wood-grain texture and color disappear.

and Fournier [16] constructed a model assuming a surface consist-
ing of microscopic cylinders. Oren and Nayar [14] derived a non-
Lambertian diffuse model on the basis of diffuse micro-facets.

An alternative approach for deriving theoretical models is to per-
form a deterministic or Monte Carlo simulation on a surface model
at a micro-scale. Kajiya [10] computed anisotropic reflectance
functions based on the Kirchoff laws. He proposed storing the
results in a table from which the values are linearly interpolated.
Cabral [2] also stored reflectance simulation results in a table, but
then represented them using spherical harmonics for a rendering
step. Westinet al. [24] directly estimated the coefficients of the
spherical harmonics. Hanrahan and Krueger [8] simulated subsur-
face scattering and stored the results in a uniform subdivision of the
hemisphere. Gondeket al. [7] stored results in an adaptive subdivi-
sion of the geodesic sphere.

Empirical models, on the other hand, are not constructed from
physical first principles. Instead, they capture reflectance effects
using basis functions or other generic functions. The functions
usually do not have any inherent physical meaning. Their physi-
cal validity stems from the theoretical or measured data to which
they are fitted. For this purpose the functions should be expressive,
while still being compact and efficient to use. Lambert’s approx-
imation, which assumes that the reflectance function of a diffuse
surface is simply a constant, is widespread and sufficiently accu-
rate for many applications. Phong [15] introduced one of the first
more general shading models into computer graphics. Although
it was not presented in the context of physically-based rendering,
Lewis [12] showed how a physically plausible reflectance function
can be derived from it. Ward [23] presented a model based on a
Gaussian lobe, stressing its physical plausibility and ease of use.
He successfully fitted the model to measurements of various sur-
faces and presented an equation to sample directions for it, which
is important for Monte Carlo applications such as stochastic ray
tracing. Schlick [17, 18] presented a model in which the impor-
tant factors of previous physically-based models are approximated
numerically, making it more convenient for use in Monte Carlo al-
gorithms. Fournier [6] experimented with sums of separable func-
tions for representing reflectance models, for application in radios-

ity algorithms. Schr¨oder and Sweldens [19] represented reflectance
functions using spherical wavelets. Koenderinket al. [11] recently
introduced a compact representation based on Zernike polynomials.

Our work falls within the latter category of representations. We
take a novel approach, using non-linear approximation with a sum
of one or more appropriate functions. In the next section, we ex-
plain the general principle of non-linear approximation.

3 NON-LINEAR APPROXIMATION

Approximating functions with linear basis functions is well stud-
ied. Some common basis functions are Fourier bases, Chebychev
polynomials and piece-wise linear functions. When approximating
a function, the coefficients of the basis functions are determined by
a set of linear equations. Non-linear approximation, for instance
with rational functions or with Gaussians, is somewhat less known.
In this approach, the parameters of the approximating functions are
not necessarily linear with respect to the original function. They
therefore generally have to be determined using non-linear opti-
mization. Figure 3 shows an example of a peaked one-dimensional
function that is approximated using the first four terms of a Fourier
series and using two Gaussian functions. The Fourier terms vary
in amplitude and in phase. Due to the relatively sharp peaks in the
original function, their sum is only a rough approximation, which
becomes negative at some point. The Gaussians are parametrized
by a position, a standard deviation and a size. Their sum approxi-
mates the original function much better and remains positive over
the interval. Obviously, this is not true in general, for all possi-
ble functions. However, the non-linear functions can be chosen
such that they span a region of the function space that suits a spe-
cific application. Functions can then be approximated using a more
compact representation. Furthermore, the parameters can be more
intuitive when interpreting or controlling the model.

In the context of modeling BRDFs, more general representations
are usually linear, e.g. spherical harmonics [2, 24], sums of sep-
arable bicubic polynomials [6] or wavelets [19]. Especially the
former representations may require many coefficients, for instance
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Figure 3: (a) A one-dimensional function (solid line) and its approximation by the first four terms of the Fourier series (dashed line). (b)
The same function (solid line) and its approximation by the sum of two unconstrained Gaussians (dashed line). The Gaussians (dotted lines)
correspond directly to the main features of the function.

for specular surfaces, which have reflectance functions with high
frequencies. On the other hand, many popular models are simple
non-linear approximations. The cosine lobe model [12] and the
Gaussian model by Ward [23] are probably the most widely used
examples, being simple and efficient. Instead of fitting a function
in one dimension as in Figure 3, these approximations are defined
in the four directional dimensions of the reflectance function.

In this work we take the idea of non-linear approximation a step
further, paying close attention to physical plausibility and ensuring
computational efficiency.

4 THE GENERALIZED COSINE MODEL

Our representation is a generalization of the cosine lobe model that
is based on the Phong shading model. As such, it is intended to
approximate the directional-diffuse component and possibly a non-
Lambertian diffuse component of a reflectance function. We first
discuss the cosine lobe model and then our generalization.

4.1 The Classical Cosine Lobe Model

The original cosine lobe model is attractively simple, but it has a
few major shortcomings for representing directional-diffuse reflec-
tion. Figure 5 shows the appearance of the model for different view-
ing angles. The behavior contrasts sharply with the reflectance be-
havior of most real surfaces, which appear more specular at grazing
angles, because the apparent roughness decreases (Figure 2). So
why do the reflections in the images of Figure 5 disappear? There
are two related reasons. Figure 4a shows how the shape and size
of the reflectance lobe remain the same for all incident directions.
For grazing angles, up to half the lobe disappears under the surface.
Furthermore, the remaining part has to be multiplied by the cosine
of the angle with the normal when computing the reflected power.
As illustrated in Figure 4b, this results in the albedo (the directional-
hemispherical reflectance) decreasing rapidly towards grazing an-
gles. Visually, this means that the directional-diffuse reflection will
disappear rather than increase.

In spite of these flaws, the original cosine lobe model is still
widely used for illumination simulations. The model is physically
plausible: it is reciprocal and conservation of energy can be ensured
easily. It is simple and computationally inexpensive to evaluate. It
is attractive for Monte Carlo algorithms as one can easily sample
directions according to the function. In the context of deterministic
algorithms, Arvo [1] showed how irradiance tensors can be applied
to analytically compute cosine lobe reflections on surfaces illumi-
nated by diffuse luminaires.

We briefly recall that the original cosine lobe model for a given
position and wavelength can be written formally as follows:

fr(u, v) = ρsCs cos
n α, (1)

whereα is the angle between the exitant directionv and the mirror
direction of the incident directionu, which we will denote byum.
In order not to burden our notation we will define the power of neg-
ative values as 0; the lobe is clamped to 0 for negative cosine values.
If we chooseCs to be the normalization factor(n+ 2)/(2π), then
ρs is a value between 0 and 1, expressing the maximum albedo of
the lobe. This maximum is reached for perpendicularly incoming
light. The maximum albedoρs and the specular exponentn are
the parameters that determine the size and shape of the reflectance
function. The cosine can be written as a dot product, and as men-
tioned in [1], the mirroring around the normaln can be written using
a Householder matrix:

fr(u, v) = ρsCs [um · v]
n

= ρsCs [u
T (2nnT − I)v]n. (2)

4.2 The Generalized Cosine Lobe Model

Our model can be regarded as a generalization of the original co-
sine lobe model. Most known generalizations simply scale the re-
flectance lobes in some way, violating reciprocity in the process.
Changing the model while still satisfying the reciprocity constraint
is hard. Physical plausibility, and reciprocity in particular, are there-
fore important merits of the generalization presented. Yet the rep-
resentation is conceptually simple and it retains the original advan-
tages for Monte Carlo sampling and analytical evaluation. As a
result, it can easily be integrated into existing code.

The essential observation is that Equation 2 can be generalized
by replacing the Householder transform together with the normal-
ization factor by a general3× 3matrix M :

fr(u, v) = ρs [u
TMv ]n, (3)

where we assume that the direction vectors are defined with respect
to a fixed local coordinate system at the surface. This representa-
tion provides us with 9 coefficients and an exponent to shape the
reflectance function. Of course, certain physical restrictions apply
to these parameters. In order for this reflectance function to be re-
ciprocal, the matrix has to be symmetrical:M = MT .

We can now apply a singular value decomposition ofM into
QTDQ. This yields the transformationQ for going to a new lo-
cal coordinate system, in which the matrix simplifies to the diag-
onal matrixD. Except for unusual types of anisotropy, the axes
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Figure 4: (a) Polar plots of the classical cosine lobe reflectance model (ρs = 0.2, n = 20) with a Lambertian term (ρd = 0.8) in the incidence
plane, for incidence angles0◦, 30◦ and60◦. (b) The relative decrease of the albedo of the directional-diffuse term as a function of incidence
angle.

Figure 5: Rendered pictures of a scene with the classical cosine lobe model, for various viewing angles. The glossy reflection on the table
disappears at grazing angles, which is exactly the opposite of real surface behavior.
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Figure 6: The incident directionu and exitant directionv are de-
fined in a local coordinate system at the surface. The coordinate
system is aligned to the normal and to the principal directions of
anisotropy, if any.

are now aligned to the normal and to the principal directions of
anisotropy, as illustrated in Figure 6. The diagonal matrix can be
seen as weighting the terms of the dot productu · v:

fr(u, v) = ρs [Cxuxvx + Cyuyvy + Czuzvz]
n. (4)

This formulation of the model is the most convenient to use. In
the case of isotropic reflection,Cx = Cy. The original cosine lobe
model is obtained by choosing−Cx = −Cy = Cz = n

√
Cs. How-

ever, much more expressive functions than the cosine lobe model
can be obtained by varying the different parameters, as we will
show in more detail in Section 5. Note that the function is de-
fined for all incident and exitant directions. It is thus fully four-
dimensional and we apply and fit it as such.

4.3 The Generalized Function as a Cosine Lobe

The generalized function has an elegant and very practical property:
for each given incident directionu the function can be rewritten
as a scaled version of an ordinary cosine lobe. Simply rewriting
Equation 3:

fr(u, v) = ρs ‖u
TM‖n [

uTM
‖uTM‖

v]n

= ρsCs(u) [u
′ · v]n

= ρsCs(u) cos
n α′. (5)

The directionu′ = (uTM/‖uTM‖)T is a transformed and nor-
malized version of the incident directionu, and the angleα′ is
its angle with v. The scaling factorCs(u) = ‖uTM‖n is a
power of the normalization factor and therefore varies with the in-
cident direction. For the specific case of Equation 4, the direction
u′ = (Cxux, Cyuy , Czuz)T /

√
C2xu2x +C2yu2y + C2zu2z and the

scaling factorCs(u) =
√
C2xu2x + C2yu2y + C2zu2z

n
. This observa-

tion shows how the original cosine lobe function is now generalized
in its orientation and its scaling. The changes in orientation and
scale are specific results of Equation 3 – if they were just arbitrary,
reciprocity would generally not be preserved.

Practically, the equation makes it straightforward to continue us-
ing the same Monte Carlo sampling strategies and deterministic
evaluation techniques as for the original cosine lobe model. One
only needs to substitute the mirror directionum by u′ (or the angle
α by α′) and scale the results as required. For instance, the albedo
ρs(u) for each incident directionu can be computed analytically,
using the procedures presented by Arvo [1]. This is specifically
useful to ensure energy conservation.
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Figure 7: (a) Polar plots of the classical cosine lobe model (ρs = 0.2, n = 20) with a generalized diffuse term (ρd = 0.8, n = 0.5) and
an additional mirror term (Rm = 0.4). (b) The albedos of the diffuse and directional-diffuse terms,ρd(θ) andρs(θ) respectively, decrease
towards grazing angles; the mirror termρm(θ) gradually takes over.

Figure 8: Rendered pictures of a scene with the classical cosine lobe model, now including the mirror term and a generalized diffuse term.
The mirror term gradually takes over from the directional-diffuse term, and the diffuse term fades out. Even with these minor changes the
table surface already shows a more realistic reflective behavior.

5 QUALITATIVE PROPERTIES

In this section, we illustrate the qualitative properties of our gener-
alized model. We construct a few simple reflectance functions with
diffuse, directional-diffuse and specular components, to demon-
strate how the model can simulate important aspects of real-life re-
flectance behavior. Section 6 will then demonstrate the quantitative
properties of the model, by fitting sums of primitive functions to a
complex physically-based model and to actual measurements.

5.1 Non-Lambertian Diffuse Reflection

An effect apparent in the pictures of Figure 2 is the fading out of the
diffuse component for grazing angles. As more light is reflected off
the coating of the surface, the subsurface scattering responsible for
the diffuse reflection diminishes. The surface looks less saturated
and the wood texture disappears. While our generalized cosine lobe
model encompasses the Lambertian model (by settingn = 0), a
more generalrotationally symmetricdiffuse component can be de-
rived from Equation 4, by settingCx = Cy = 0:

fr(u, v) = ρdCd [uzvz]
n, (6)

where the normalization factorCd = (n + 2)/(2π), andρd is the
parameter between 0 and 1 specifying the maximum albedo. For
grazing incident or exitant directions the reflectance decreases pro-
portionally to a power of the cosine of the angle with the normal.
This instance actually corresponds to the model presented by Min-
naert [13], in the context of modeling the reflectance of the lunar
surface. The non-Lambertian diffuse component is plotted in Fig-
ure 7a (appearing as the small circular component near the origin),
along with directional-diffuse and mirror components that will be

discussed in the next section. Figure 7b shows the behavior of the
albedoρd(u) as a function of incidence angleθ, normalized by the
parameterρd. Figure 8 illustrates the effect visually: the diffuse
component of the table surface fades out for grazing angles.

5.2 Specularity at Grazing Angles

The other important visual effect shown in the pictures of Figure 2
is the increasing specularity of the polished table surface at grazing
angles. This behavior can be accounted for by extending the model
of a diffuse lobe and a directional-diffuse lobe with a specular mir-
ror term. The directional-diffuse lobe can in the simplest case be
an ordinary cosine lobe. The mirror term can be made to reflect a
fraction of the power that is not reflected by the directional-diffuse
lobe. A simple instance of these two components thus becomes:

fr(u, v) = ρsCs [um · v]
n (7)

+(ρs − ρs(u))Rm δ(um − v),

whereδ(um − v) is the Dirac delta function with respect to the
canonical measure on the sphere. In this case it is convenient to
chooseCs = (n + 1)/(2π). The factorρs − ρs(u) is the differ-
ence between the directional-diffuse scaling factor and the actual
albedo for directionu. The parameterRm expresses the fraction
of the power lost in the directional-diffuse lobe that is reflected in
the mirror term. In Monte Carlo simulations this can be taken quite
literally. One can sample a direction according to the cosine lobe.
Any sample is then tested against the cosine of the angle with the
normal, with rejection sampling. The fractionRm of rejected sam-
ples is sent into the mirror direction. In analytical computations
each of the terms, including the mirror term, can be computed.
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Figure 9: (a) Polar plots of the generalized cosine lobe model (ρs = 0.2, n = 20, Cz/Cx = 0.95) with a Lambertian term (ρd = 0.8). The
lobes are slightly off-specular and increase in size towards grazing angles. (b) The albedo of the directional-diffuse term only decreases for
larger incidence angles as a result.

Figure 10: Rendered pictures of a scene with the generalized cosine lobe model. The off-specular directional-diffuse reflectance of the table
surface gradually increases for grazing angles.

Figure 7 presents an example function, including the non-
Lambertian diffuse reflection that was discussed in the previous
section. Note that the mirror term is actually a Dirac delta func-
tion; it is broadened here to visualize its behavior. Figure 7b dis-
plays the albedosρs(θ) andρm(θ) for the directional diffuse and
the mirror terms, respectively. Figure 8 then shows the example
scene rendered with the extended model.

The results look reasonably realistic because the mirror term
is a rough approximation of an actual Fresnel term multiplied by
masking-shadowing and roughness factors (e.g. [9]). If it is known,
a more accurate approximation can be used by attenuating the mir-
ror term, so thatRm becomes a function of incidence angle.

5.3 Off-Specular Reflection

Application of the model becomes more interesting by varying the
individual parameters of Equation 4. Torrance and Sparrow [21]
already observed that the directional-diffuse lobe for a given inci-
dent direction generally does not reach its maximum for the mirror
direction, but rather for a more grazing direction. At the same time
the size of the reflectance lobe increases. The original cosine lobe
model obviously does not account for these effects. This short-
coming is sometimes overcome by dividing by the cosine of the
exitance angle, which breaks reciprocity. In the generalized model,
parametersCz that are smaller than−Cx = −Cy yield a range of
off-specular reflection effects, without compromising the physical
plausibility. Figure 9 gives an example with moderately increasing
reflectance, and Figure 10 shows a set of rendered images. The ta-
ble surface exhibits off-specular reflection. It looks mostly diffuse
from above, while the directional-diffuse component increases for
grazing angles.

5.4 Retro-Reflection

Many surfaces not only scatter light in the forward direction, but
also backwards, in the direction of the illuminant. This phe-
nomenon is called retro-reflection. The moon surface is an extreme
example, where a large fraction of light from the sun is reflected in
the incident direction. In the generalized model, a retro-reflective
lobe can be represented in the same uniform framework by using
a set of parametersCx, Cy andCz that are all positive. The re-
flectance measurements of paint in section 6.2 will illustrate this
effect.

5.5 Anisotropy

Anisotropic reflection can be modeled with a single primitive func-
tion, by assigning different values to the parametersCx andCy.
As with the parameterCz that controls the off-specular reflection,
this will pull the reflectance lobes for all incident directions in a
preferential direction and scale them. More general anisotropy, e.g.
with a splitting lobe, can be obtained by constructing a matrixM
for Equation 3 that is not necessarily symmetrical. Adding a re-
flectance term with its transposeMT then yields a new reciprocal
model.

6 QUANTITATIVE PROPERTIES

In this section, we show how the model is also suitable for repre-
senting complex real-life reflectance functions. The representation
is a sum of several primitive functions of the form of Equation 4.
Absorbing the albedoρs in the other parameters, each primitive
functioni is defined by the parametersCx,i(= Cy,i), Cz,i andni.
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Figure 11: Polar plots of the fitted reflectance model (dashed lines) against the original physically-based model of a roughened aluminum
surface (solid lines) in the plane of incidence, forθ = 0◦, 30◦, 60◦, at 500nm. The reflectance function becomes more off-specular and
strongly increases in size towards grazing angles. The sum of generalized cosine functions captures these effects.
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Figure 12: Plots of the original physically-based model of roughened aluminum (top row, a) and of the fitted reflectance model (bottom row,
b), now multiplied by the cosines of the incidence and exitance angles with the normals, fitted and shown over the entire hemisphere, for
various incidence angles.

The model can thus be written as:

fr(u, v) =
∑
i

[Cx,iuxvx + Cy,iuyvy + Cz,iuzvz ]
ni . (8)

The model is fitted to the BRDF of aluminum, based on the
physically-based reflectance model of Heet al., and to the mea-
sured BRDF of blue paint. We minimize the mean-square error of
the reflectance functions multiplied by the cosines of the incidence
and exitance angles with the normal. As the primitive functions
are non-linear, a non-linear optimization technique is required to
determine the parameters. The Levenberg-Marquardt optimization
algorithm has proven to be efficient for this application; computing
each approximation requires only a few minutes in a standard nu-
merical package. This is not a serious penalty, as it only has to be
done once for each measured material.

In both case studies, we first look at the BRDFs in the incidence
plane, and then in the entire function space. In the incidence plane
the function space is two-dimensional, depending on the incident
polar angle and the exitant polar angle. The entire function space
of isotropic BRDFs is three-dimensional, additionally depending
on the exitant azimuthal angle.

6.1 Fit to a Physically-Based Model

The reflectance model derived by Heet al.[9] is generally acknowl-
edged as the most sophisticated model in use in computer graphics.

It consists of a Lambertian term, a directional-diffuse term and a
mirror term. Here we concentrate on approximating the directional-
diffuse term. In our example, the Lambertian term and the mirror
term are mostly negligible, but in any case representing and using
these terms is straightforward. We present the results for roughened
aluminum, as in their original paper for wavelengthλ = 500nm,
roughnessσ0 = 0.28µm and autocorrelation lengthτ = 1.77µm.

Figure 11 shows the results of a fit in the incidence plane, using
the sum of three primitive functions. It is important to note that the
function has not been fitted for each of the individual lobes, which
would be a lot easier, but to the reflectance function as a whole. The
fit is visually perfect, except for more grazing angles. In this regime
of angles, most of the difference is due to the masking term, which
is not present in the representation. These values are less important,
however, as they are multiplied in illumination computations by the
cosine of the angle between the direction and the surface normal.
Additionally, the mirror reflection becomes more important than
the directional-diffuse reflection for grazing angles.

Figure 12 shows the results of fitting the approximation to the
reflectance function in the entire three-dimensional space of direc-
tions. The functions are plotted for three different incidence angles,
in a uniform parametrization of the hemisphere [20]. The creases
along the diagonals of the square are a result of the parametrization
and are not related to the functions. The functions are multiplied
by the cosine of the exitance angle with the normal, so that the vol-
umes below the surfaces are proportional to the albedos. Both the
shapes of the functions and the albedos match very well.
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Figure 13: Polar plots of the fitted reflectance model (dashed lines) against the original measured BRDF data of blue paint (solid lines) in the
plane of incidence, forθ = 0◦, 35◦, 65◦, at550nm. The model successfully reproduces both the increasing retro-reflection and off-specular
reflection.
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Figure 14: Plots of the original measured model of blue paint (top row, a) and of the fitted reflectance model (bottom row, b), now fitted and
shown over the entire hemisphere, for various incidence angles.

6.2 Fit to Reflectance Measurements

The second comparison is with the measured reflectance data of
a blue paint sample (spray-painted latex blue paint, Pratt & Lam-
bert, Vapex Interior Wall Base 1, Color #1243, Cal. III) [5]. Fig-
ure 13 shows the data and the approximation in the incidence plane
at550nm, for three incidence angles.

Compared to the strong forward-scattering behavior of the
roughened aluminum, the paint is largely diffuse. Due to measure-
ment noise, the data are more irregular. Still, there are important
other phenomena. The forward scattering lobe increases rapidly
for grazing angles and is very off-specular. The measurements did
not include highly grazing angles, for which theory predicts a drop-
off. The measurements did show increasing retro-reflection. The
approximation, which uses a sum of three directional-diffuse func-
tions and a Lambertian term, captures this effect.

Figure 14 shows the data and the approximation fitted over the
three-dimensional space of incident and exitant directions. Table 1
lists the coefficients for this approximation, illustrating how sim-
ple and compact the model is. The positive value ofCx for lobe I
indicates that it is a retro-reflective lobe, while lobes II and III ac-
count for the forward scattering. The ratios of the parametersCx
andCz give an idea of how off-specular the lobes are and how fast
they increase in size for grazing angles. Note that the exponents
are not necessarily integers. For Monte Carlo simulations using the
model, this is generally not a problem. For analytical computations
the exponents would have to be constrained to integer values.

Lobe Cx = Cy Cz n
I 0.86 0.77 18.6
II −0.41 0.018 2.58
III −1.03 0.70 63.8
Diffuse 0.13

Table 1: The coefficients of the representation for the three-
dimensional fit of Figure 14.

7 RESULTS

We have approximated the measured reflectance data of the blue
paint presented in Section 6.2 and of a standardized steel sample
(Matte finished steel, Q-Panel Laboratory Products, Q-panel R-46)
at 6 discrete wavelengths. The resulting models were then used
for global illumination rendering, using a Monte Carlo path tracing
program. The implementation required only a few additional lines
of code. The reflectance functions are evaluated using Equation 8.
For sampling an exitant direction for a given incident direction we
construct a probability density function that is a linear combination
of the primitive cosine reflectance lobes.

Figure 15 shows a rendering of a simple scene with two spheres,
a Q-panel, and two colored light sources, positioned symmetrically
with respect to the viewer. A larger white light source above the
viewer illuminates the whole scene. The sphere on the left is ren-
dered with a Lambertian diffuse approximation of the measured
blue paint, while the sphere on the right is rendered with the gener-
alized reflectance model. The latter sphere has both red and green
highlights due to strong forward scattering. These are lacking on
the Lambertian sphere. With a light source near the viewer, the right
sphere has a slightly flatter appearance due to retro-reflection. The
Q-panel has a completely different appearance, displaying a blurry
metallic reflection of the colored lights and of the objects. The
representation successfully captures these very different reflectance
characteristics.

8 CONCLUSIONS

We have introduced an efficient representation for a wide range of
bidirectional reflectance distribution functions. It is an interesting
alternative for previous models of directional-diffuse reflectance,
which required either simplified single-term representations, com-
plex analytical expressions for specific classes of functions, or gen-
eral but large representations with linear basis functions.



Figure 15: Rendered picture of a scene with two spheres and a Q-panel, illuminated by two colored light sources and one larger white light
source. The sphere on the left has a Lambertian approximation of the measured paint reflectance; the sphere on the right is rendered with the
non-linear approximation. The Q-panel has the non-linear approximation of the measured steel reflectance.

• The representation is compact. Each primitive function is de-
termined by two or three coefficients and an exponent. Be-
cause the representation is memory-efficient, any complex
wavelength dependency can be modeled by constructing in-
dependent approximations at discrete wavelengths.

• The functions are expressive. They can represent complex
reflectance behavior, such as off-specular reflection, increas-
ing directional-diffuse reflectance for grazing angles, retro-
reflection and non-Lambertian diffuse reflection in a uniform
way.

• The functions handle noise in the raw reflectance data grace-
fully. They can capture sharp reflectance lobes without suf-
fering from small spurious errors in the data. If the data are
sparse, the model interpolates them naturally.

• The functions themselves are physically plausible, irrespec-
tive of how they were constructed. They are inherently re-
ciprocal. Energy-conservation can be verified analytically for
each incident direction.

• On the algorithmic side, the representation is efficient and
easy to use in both local and global illumination algorithms.
Its simplicity and uniformity make it practical for implemen-
tation in hardware. In Monte Carlo algorithms, reflection
directions for a given incident direction can be sampled ac-
cording to the transformed cosine lobe. In deterministic al-
gorithms, illumination from diffuse emitters can be computed
analytically, using a straightforward extension of the calcula-
tions for ordinary cosine lobes.

• While the representation cannot approximate all possible re-
flectance functions to any desired accuracy, it adequately rep-
resents a range of measured BRDF data, which usually only
have a very limited accuracy. In our tests, we have obtained
satisfactory results with as few as three primitive functions to
represent directional-diffuse reflections from roughened met-
als and paints. Broad, glossy reflectance lobes are relatively
easy to approximate. Sharp directional-diffuse peaks, such as
for smooth metal surfaces, may be harder to represent, due to
a strong dependency on the Fresnel factor, which is not ex-
plicitly included in the representation.

As future work, we will look into the details of representing
anisotropic reflectance measurements with one or more terms of
the current model, e.g. to model the effect of splitting reflectance
lobes at anisotropic surfaces.
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[19] P. Schröder and W. Sweldens. Spherical wavelets: Efficiently
representing functions on the sphere. InSIGGRAPH 95 Con-
ference Proceedings, pages 161–172, Los Angeles, Califor-
nia, August 1995.

[20] P. Shirley and K. Chiu. Notes on adaptive quadrature on the
hemisphere. Technical Report 411, Department of Computer
Science, Indiana University, Bloomington, Indiana, 1994.

[21] K.E. Torrance and E.M. Sparrow. Off-specular peaks in the di-
rectional distribution of reflected thermal radiation. InTrans-
actions of the ASME, pages 1–8, Chicago, Ill., November
1965.

[22] K.E. Torrance and E.M. Sparrow. Theory for off-specular re-
flection from roughened surfaces.Journal of the Optical So-
ciety of America, 57(9):1105–1114, September 1967.

[23] G.J. Ward. Measuring and modeling anisotropic reflection.
Computer Graphics, 26(2):265–272, July 1992.

[24] S.H. Westin, J.R. Arvo, and K.E. Torrance. Predicting re-
flectance functions from complex surfaces.Computer Graph-
ics, 26(2):255–264, July 1992.


